Events

KLI Colloquia are invited research talks of about an hour followed by 30 min discussion. The talks are held in English, open to the public, and offered in hybrid format. 

 

Fall-Winter 2025-2026 KLI Colloquium Series

Join Zoom Meeting
https://us02web.zoom.us/j/5881861923?omn=85945744831
Meeting ID: 588 186 1923

 

25 Sept 2025 (Thurs) 3-4:30 PM CET

A Dynamic Canvas Model of Butterfly and Moth Color Patterns

Richard Gawne (Nevada State Museum)

 

14 Oct 2025 (Tues) 3-4:30 PM CET

Vienna, the Laboratory of Modernity

Richard Cockett (The Economist)

 

23 Oct 2025 (Thurs) 3-4:30 PM CET

How Darwinian is Darwinian Enough? The Case of Evolution and the Origins of Life

Ludo Schoenmakers (KLI)

 

6 Nov (Thurs) 3-4:30 PM CET

Common Knowledge Considered as Cause and Effect of Behavioral Modernity

Ronald Planer (University of Wollongong)

 

20 Nov (Thurs) 3-4:30 PM CET

Rates of Evolution, Time Scaling, and the Decoupling of Micro- and Macroevolution

Thomas Hansen (University of Oslo)

 

4 Dec (Thurs) 3-4:30 PM CET

Chance, Necessity, and the Evolution of Evolvability

Cristina Villegas (KLI)

 

8 Jan 2026 (Thurs) 3-4:30 PM CET

Embodied Rationality: Normative and Evolutionary Foundations

Enrico Petracca (KLI)

 

15 Jan 2026 (Thurs) 3-4:30 PM CET

On Experimental Models of Developmental Plasticity and Evolutionary Novelty

Patricia Beldade (Lisbon University)

 

29 Jan 2026 (Thurs) 3-4:30 PM CET

O Theory Where Art Thou? The Changing Role of Theory in Theoretical Biology in the 20th Century and Beyond

Jan Baedke (Ruhr University Bochum)

Event Details

Thomas Hansen
KLI Colloquia
Rates of Evolution, Time Scaling, and the Decoupling of Micro- and Macroevolution
Thomas HANSEN (University of Oslo)
2025-11-20 15:00 - 2025-11-20 16:30
KLI
Organized by KLI

Join Zoom Meeting
https://us02web.zoom.us/j/5881861923?omn=85945744831
Meeting ID: 588 186 1923


Topic description / abstract:

Rates of evolution get smaller when they are measured over longer time intervals. As first shown by Gingerich, rates of morphological change measured from fossil time series show a robust minus-one scaling with time span, implying that evolutionary changes are just as large when measured over a hundred years as when measured over a hundred-thousand years. On even longer time scales, however, the scaling shifts toward a minus-half exponent consistent with evolution behaving as Brownian motion, as commonly observed in phylogenetic comparative studies. Here, I discuss how such scaling patterns arise, and I derive the patterns expected from standard stochastic models of evolution. I argue that observed shifts cannot be easily explained by simple univariate models, but require shifts in mode of evolution as time scale is changing. To illustrate this idea, I present a hypothesis about three distinct, but connected, modes of evolution. I analyze the scaling patterns predicted from this, and use the results to discuss how rates of evolution should be measured and interpreted. I argue that distinct modes of evolution at different time scales act to decouple micro- and macroevolution, and criticize various attempts at extrapolating from one to the other.
 

 
Biographical note:
 
Thomas F. Hansen is a theoretical biologist working at the University of Oslo in Norway. He is interested in the conceptual structure of biology with special emphasis on evolutionary biology. His main technical expertise is in theoretical population genetics, quantitative genetics and biostatistics. He has worked on a variety of topics in evolutionary biology including the evolution of evolvability and on phylogenetic comparative methods. He has a special interest in measurement theory, the study of how ideas and concepts are represented with numbers and mathematical models. He has applied this to study the measurement of fitness, selection, evolvability, adaptation, allometry and rates of evolution.